If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+24x-5=0
a = 36; b = 24; c = -5;
Δ = b2-4ac
Δ = 242-4·36·(-5)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-36}{2*36}=\frac{-60}{72} =-5/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+36}{2*36}=\frac{12}{72} =1/6 $
| 4x-3=-5x= | | 4/8=y/11 | | 240-15m=200-5m | | 0.2(20)+0.15x=0.1(20)+0.2x | | -5x–10=2–(x+4) | | y=8×9-(1+4×9) | | -214=-4-3(8r+6) | | -1/5a*21=23 | | 4*9a=12a+36 | | Y=x^2-7×+12 | | n-2(n+2)=-13+2n | | 0.18(y-4+0.12y=0.10y-1.5 | | −16t^2+8t+80=0 | | 4x^2+2x-32=0 | | 60=-4(-3n-3) | | 38-38(.20)=x | | 42=18t+4(t/5) | | 0.2(a+12)=0.4 | | x/5+x/5=8 | | 3(t-2)+5t=4(2t+5)-8 | | 9x-4=6x+12 | | 2d-6=1/4d+1 | | 9(5x-6)=39 | | -2(x+3)+3x=-1 | | x^2+4=64 | | x^2-110x+240=0 | | 2/1r−3=3(4−2/3r) | | 28-3x=12+5x | | 8^6=4^x | | 8n/5−1/5=7/5 | | -11x-20=-10+35 | | 48=2/5x-7 |